Four generations of transition-state analogues for human purine nucleoside phosphorylase.

نویسندگان

  • Meng-Chiao Ho
  • Wuxian Shi
  • Agnes Rinaldo-Matthis
  • Peter C Tyler
  • Gary B Evans
  • Keith Clinch
  • Steven C Almo
  • Vern L Schramm
چکیده

Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*i(1/4) 58 pM, first generation)contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*i(1/4) 9 pM, second-generation),uses a methylene-bridged dihydroxypyrrolidine cation with twoasymmetric centers.DATMe-Immucillin-H (K*i(1/4)9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*i(1/4) 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; 1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, 2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, 3) interaction between phosphate and inhibitor hydroxyl groups, and 4) His257 interacting with the 5'-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase.

Genetic deficiency of human purine nucleoside phosphorylase (PNP) causes T-cell immunodeficiency. The enzyme is therefore a target for autoimmunity disorders, tissue transplant rejection and T-cell malignancies. Transition state analysis of bovine PNP led to the development of immucillin-H (ImmH), a powerful inhibitor of bovine PNP but less effective for human PNP. The transition state of human...

متن کامل

One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase.

Genetic defects in human purine nucleoside phosphorylase cause T-cell deficiency as the major phenotype. It has been proposed that efficient inhibitors of the enzyme might intervene in disorders of T-cell function. Compounds with features of the transition-state structure of purine nucleoside phosphorylase were synthesized and tested as inhibitors. The transition-state structure for purine nucl...

متن کامل

Synthesis of a new family of acyclic nucleoside phosphonates, analogues of TPases transition states.

A 6-step procedure was developed for the synthesis of a new family of acyclic nucleoside phosphonates (ANPs), "PHEEPA" [(2-pyrimidinyl-2-(2-hydroxyethoxy)ethyl)phosphonic acids] in overall yields ranging from 4.5% to 32%. These compounds, which possess on one side a hydroxy function and on the other side a phosphonate group, can be considered either as potential antiviral agents or as transitio...

متن کامل

Second-sphere amino acids contribute to transition-state structure in bovine purine nucleoside phosphorylase.

Transition-state structures of human and bovine of purine nucleoside phosphorylases differ, despite 87% homologous amino acid sequences. Human PNP (HsPNP) has a fully dissociated transition state, while that for bovine PNP (BtPNP) has early SN1 character. Crystal structures and sequence alignment indicate that the active sites of these enzymes are the same within crystallographic analysis, but ...

متن کامل

Development of transition state analogues of purine nucleoside phosphorylase as anti-T-cell agents.

Newborns with a genetic deficiency of purine nucleoside phosphorylase (PNP) are normal, but exhibit a specific T-cell immunodeficiency during the first years of development. All other cell and organ systems remain functional. The biological significance of human PNP is degradation of deoxyguanosine, and apoptosis of T-cells occurs as a consequence of the accumulation of deoxyguanosine in the ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 11  شماره 

صفحات  -

تاریخ انتشار 2010